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Abstract

We introduce Tracking at Any Granularity (TAG): a new task, model, and dataset
for tracking arbitrary targets in videos. We seek a tracking method that treats
points, parts, and objects as equally trackable target types, embracing the fact that
the distinction between these granularities is ambiguous. We introduce a generic
high-capacity transformer for the task, taking as input a video and a target prompt
(indicating what to track, in the form of a click, box, or mask), and producing as
output the target’s segmentation on every frame. To train the model, we aggregate
nearly all publicly-available tracking datasets that we are aware of, which currently
totals 75, amounting to millions of clips with tracking annotations, including a
long tail of rare subjects such as body keypoints on insects and microscopy data.
Our model is competitive with state-of-the-art on standard benchmarks for point
tracking, mask tracking, and box tracking, but more importantly, achieves zero-shot
performance far superior to prior work, largely thanks to the data effort. We will
publicly release our code, model, and aggregated dataset, to provide a foundation
model for motion and video understanding, and facilitate future research in this
direction.

1 Introduction

Large-scale models, powered by enormous compute and enormous data, have become the method
of choice in a variety of computer vision domains, notably including classic tasks such as image
classification (Dosovitskiy et al., 2021; Radford et al., 2021; Caron et al., 2021b), image segmenta-
tion (Kirillov et al., 2023), and action recognition (Feichtenhofer et al., 2022). The strong results
from these “foundation models” (Bommasani et al., 2021) impel us to relinquish our hard-earned
special-purpose techniques, and let data-driven optimization build new models from scratch. In this
work, we take some first steps toward applying this method to a domain which is perhaps more
heavily engineered than most: visual tracking.

Tracking is so fundamental to understanding the visual world, and its applications are so diverse,
that the vision community has divided the problem into countless distinct sub-problems, and has
devoted great energy to mastering them all, more or less independently. Existing “general-purpose”
trackers first of all partition the world on the axis of granularity: point tracking methods and object
tracking methods use entirely separate techniques, datasets, and metrics. Among object trackers, it is
typical to organize targets into categories: different models are devoted to tracking people vs. cars vs.
animals, and so on. Category-specific trackers often subdivide their subjects on granularity: humans,
for example, are partitioned into faces, bodies, and hands, and these elements are subdivided further
to enable the highest-precision applications, such as performance capture.
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This organization of the problem space has gradually led to extremely high-performing special-
purpose methods, powered by carefully crafted techniques. Two techniques in particular appear to
have stood the test of time, and are used across a wide spectrum of tracking problems: (1) cross
correlation (Bolme et al., 2010), and (2) tracking by detection (Huang et al., 2008). Cross correlation
simply refers to computing the cosine similarity between the feature of the target and the features
of an incoming video frame, and using this as the primary cue for establishing matches across
time. Tracking by detection relies on the assumption that on a new frame, the target’s location
can be reduced to a manageable number of candidate locations via the use of a detector, and from
here the tracking problem is converted to the problem of associating detections across time. These
well-reasoned techniques (often used together) offer a strict information bottleneck for learning-based
methods, and thereby prevent overfitting: models that rely on these techniques are forced to solve
tracking by matching.

Inspired by the success of large-scale models in other domains, our goal in this work is to build a
foundation model for visual tracking. We propose a transformer architecture (Vaswani et al., 2017)
that is prompted with a target to track in the form of a pixel, box or segmentation mask, and predicts
the area the target occupies in the input set of frames, which we train supervised using an aggregate
of diverse video datasets available. The architecture relies on spatio-temporal attention that jointly
featurizes the target prompt at the first frame with the video frame set. Such joint featurization goes
beyond cross-correlation and does not rely on linking detections, rather, learns the tracking objective
end-to-end through large data training.

We test our method on a set of tracking benchmarks for points (Zheng et al., 2023; Pedersen et al.,
2020), masks (Pont-Tuset et al., 2017; Tokmakov et al., 2023) and boxes (Nicora et al., 2020; Anjum
and Gurari, 2020), and show we reach state-of-the-art performance in point and mask tracking and
are close to the SOTA in segmentation tracking. Our code and data will be publicly available.

To summarize, our contributions are: (1) TAG, a foundation model for visual tracking that unifies
point, box, and mask tracking into a single architecture, which relies on (2) jointly featurizing the
target object with the video clip with a simple generic architecture, allowing end-to-end training,
unlike prior work which relies on handcrafted techniques such as correlation and tracking by detection.
Finally, (3) we aggregate existing datasets for disparate tracking tasks into the largest single collection
of publicly available tracking data, covering a wide range of domains, which we use to train our
model.

2 Related Work

Foundation models for computer vision. In recent years, simple yet scalable models have demon-
strated state-of-the-art performance across many areas, including computer vision (Bommasani
et al., 2021). Methods such as CLIP (Radford et al., 2021), DINO (Caron et al., 2021a), Masked
Autoencoding (He et al., 2022), and Stable Diffusion (Rombach et al., 2022) highlight the impor-
tance of large-scale training with simple training objectives. In object detection and segmentation,
Kirillov et al. (2023), shows remarkable performance using a transformer-based model trained on
a large annotated dataset, with minimal task-specific post-processing as used in prior work such
as He et al. (2017). Goel et al. (2023) follows a similar paradigm for 3D human pose estimation
and tracking, eschewing expensive post-processing steps used in prior work, such as Kolotouros
et al. (2019). By contrast, nearly all tracking approaches focus on specific subtasks, with significant
post-processing. In this work, we aim to build a scalable foundation model for visual tracking, by
unifying the input and output space of different tracking subtasks, which in turn allows us to train a
generic transformer-based model on a large number of tracking datasets.

Aggregated tracking datasets. To build diverse datasets for training and evaluation, a common tactic
has been to aggregate disparate datasets with unique features, resulting in both increased size and
diversity. The widely-used VOT dataset (Kristan et al. (2016)), for example, selectively incorporates
sequences from other datasets to target diverse use cases, in addition to sequences curated by the
benchmark organizers. Dave et al. (2020) gather sequences from multiple independent sources,
ranging from autonomous driving to user-generated content. Our work is particularly inspired by
Ranftl et al. (2020), which showed strong improvements in zero-shot depth estimation by introducing
a training strategy that could leverage diverse datasets with incompatible annotations. Zhou et al.
(2022) similarly aggregate datasets for object detection, building a unified model that can train on
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disparate object vocabularies. Our approach follows this line of work, aggregating diverse datasets
and presenting a unified approach that allows training on all of them.

Specialized tracking methods. The tracking literature is split into a number of subfields, each with
a specific definition and a largely disjoint set of methods. We focus here on user-initialized tracking,
where a point, box, or mask corresponding to the target to be tracked is provided. Unlike prior work,
our work proposes a single trained model that performs well on each of these task definitions. We
review the relevant task-specific methods here.

Point tracking methods (e.g. Harley et al. (2022); Doersch et al. (2022b)) often employ expensive
cost volumes to distinguish different points from each other. Our approach diverges from this norm
and directly estimates heatmaps locating the points in subsequent frames without computing cost
volumes, allowing us to unify different tracking tasks under one model.

Box tracking methods methods initially (Bertinetto et al., 2016; Li et al., 2019) used feature matching
for tracking, followed by an optional regression head for estimating scale. More recently, Yan et al.
(2021) directly localize target objects using corner prediction heads to generate probability maps for
the top-left and bottom-right corners of the target. Our approach is similar, but differs in that we
simultaneously tackle other tracking tasks in other heatmap channels.

Mask tracking methods employ a segmentation-centric tracking process to propagate a mask over
time (Perazzi et al., 2017; Li and Loy, 2018), optionally using a learned target detector (Caelles et al.,
2017; Voigtlaender and Leibe, 2017). Some methods (e.g., Voigtlaender et al. (2020)) use a box2seg
component that transforms the box output into a mask, while others (e.g., Wang et al. (2019)) generate
a segmentation mask directly, guided by a segmentation loss. Our method follows the latter, featuring
a specialized task head in our model to directly predict the mask. Compared to these specialized
tracking architectures, our proposed model unifies these tasks into one common input and output
format, providing a unified model that can track anything.

3 Tracking at Any Granularity (TAG)

3.1 Setup and overview

At its core, our TAG model is a high-capacity transformer, which takes a video as input, along with a
prompt indicating what to track, and outputs tracking across all frames in the video simultaneously.

This is “offline” (as opposed to “online”) tracking, in the sense that the model is processing a saved
video rather than an incoming data stream. In practice, the model processes a window of frames from
the video (rather than the entire video), which we sometimes refer to as a “clip”. We later describe a
simple method for joining the tracking information across clips.

Processing a clip of frames, rather than 1-2 frames at a time, is somewhat unusual in object trackers,
but this choice follows a trend from point tracking (Harley et al., 2022). A multi-frame setup has two
key benefits: (1) the model may more easily take advantage of priors that exist on the temporal axis,
such as the continuity of the object’s motion (and the camera’s motion) over time, and (2) occlusions
are less of a concern, because the object may return to view at some later timestep within the model’s
inference window.

Concretely, we are given as input a video of shape T,H,W, 3, along with a prompt of shape H,W, 1
(for a specific timestep), where T is the number of timesteps in the clip and H,W indicates the
spatial resolution of each frame. Our method begins by compressing this to T/8 · H/32 · W/32
“tokens”. We perform the bulk of our processing on these low-resolution tokens, to keep compute
tractable. The final stage of the model is to upsample from this compact representation and output
a spatiotemporal volume shaped T,H,W with K channels, where K is the number of heatmaps,
corresponding to the different tracking granularities. The specific heatmap(s) taken as final output
depends on the prompt type (e.g., if a point prompt is provided, the first heatmap is taken), but all of
the heatmaps are produced in each forward pass. The model architecture is illustrated in Figure 1.

Outputting multiple granularities not only allows our model to be multi-purpose at test time, but
allows it to accept supervision from arbitrary-granularity tracking annotations at training time.
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Figure 1: Overview of our TAG model. Our method can take any type of input prompt, e.g., point,
mask, or bounding box, and then the prompt together with the input video are encoded into a highly-
compressed set of space-time tokens. These tokens are then processed by a large transformer, and
then decoded into multi-granularity tracking outputs. Depending on the prompt, different channels
will be relevant, but the model outputs all channels for all timesteps in the forward pass.

3.2 Encoding

Our first stage encodes the input video, together with the prompt, into a manageable set of discrete
tokens. We achieve this with a simple custom-designed convolutional network, based on the encoder
from RAFT (Teed and Deng, 2020) and PIPs (Harley et al., 2022) but upgraded to 3D so as to perform
a spacetime compression.

Our encoder network takes a 4-channel sequence of frames as input. The first three channels are
RGB, and the fourth is a channel for the prompt, which on most frames is empty (zeros), but on one
frame crucially indicates the “target” for tracking. This encoder has spatial stride 32, and temporal
stride 8, and therefore reduces the input T,H,W, 4 to the shape T/8, H/32,W/32, C, where C is
the embedding dimension, set here as C = 1152.2

Early experiments determined that this convolutional encoder is preferable over the “patchify” stem
typically used in vision transformers, consistent with the findings of Xiao et al. (2021).

3.3 Processing

The main processing is carried out by a transformer (Vaswani et al., 2017). This stage aims to process
the spatiotemporal information within and across tokens, so as to enable the end-task to be solved by
the decoder (which is shallow by comparison).

In this stage, we reshape the encoder’s output into a list of length T/8 ·H/32 ·W/32, and infuse
these features with high-dimensional indicators of their spacetime coordinates, following common
practice with sinusoidal embeddings. The transformer then proceeds with the standard “blocks” of
layers: where each block consists of a LayerNorm, self-attention layer, residual connection, second
LayerNorm, a fully connected layer, and a second residual connection. Twelve such blocks are
applied.

Early experiments revealed that an MLP-Mixer (Tolstikhin et al., 2021) can be used as the processor
instead of a transformer, with similar compute cost and similar accuracy, but this choice locks the
model to a single sequence length (i.e., a fixed choice of T/8 ·H/32 ·W/32), whereas a transformer
can be trained and tested with variable resolutions.

2We use C = 1152 so as to be easily divisible by 3, which is helpful when infusing space-time (3D)
sinusoidal position embeddings.
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3.4 Decoding

After processing, the information in the tokens is rapidly upsampled into the shape of a spacetime
volume with dimensions similar to the initial volume, but with the spatial axes at half-resolution.

This is achieved by a convolutional network, based on the “Simple Feature Pyramid” from Li et al.
(2022). This consists of four parallel upsampling branches, which upsample different amounts (1x, 2x,
4x, 8x), and a final head which merges these and upsamples again (2x). We additionally provide the
final head with skip connections from the encoder, to facilitate the capture of high-frequency details.
The upsampling is done with transposed 3D convolution layers. In total, the temporal dimension is
upsampled 8x and the spatial dimensions are upsampled 16x, bringing the output to T,H/2,W/2,
and finally we use a bilinear resize (parameter-free) to arrive at full resolution T,H,W .

Each of the decoder branches progressively lowers the channel dimension while upsampling, to help
reduce memory and compute at the higher resolutions. The final layer of the decoder outputs K = 5
channels, and these are taken to represent multiple forms of tracking:

• Point tracking: This is represented as a heatmap, which ideally contains a strong peak at the
point center.

• Visible object tracking: This is represented as a mask, delineating the region of the object that is
visible in the current frame.

• Full object tracking: This is represented as a mask, delineating the region that the full object
would occupy if it were not occluded.

• Box tracking: This is represented as two heatmaps, representing coordinates with peaks: the first
indicates the top left corner of the box, and the second indicates the bottom right corner of the
box.

These channels are supervised with ground truth, when available.

We also estimate visibility, as follows: for each timestep at the compressed resolution, we take an
average of the spatial features, and then send this T/8 sequence of tokens through a convolutional
1D upsampler, arriving at T visibility scalars in the end.

3.5 Supervision

Different datasets provide varying amounts and varying types of ground truth. Our strategy is to use
all available supervision. We simply convert every type of annotation into a binary cross-entropy loss
defined on one or more heatmaps:

Lce = H∗ logH+ (1−H∗) log(1−H), (1)

where H and H∗ indicate estimated and ground truth heatmaps. We supervise the visibility head with
another cross entropy loss of the same form.

Point annotations are converted into ground-truth heatmaps which have a single 1 at the point
coordinate and zeros elsewhere. Box annotations are similarly converted, but we produce one
heatmap for the top-left coordinate and another heatmap for the bottom-right coordinate of the
box. Mask annotations, for the visible portion of the object and for the full object (which is rarely
available), are treated as binary masks.

We additionally create weak supervision where possible, by making appropriate use of ignore masks.
For example, we convert box annotations into partial labels for the “visible object” mask, by covering
the box region with “ignore” and setting the remainder of the frame as “negative”. We also propagate
point and visible-object labels to the full-object channel, and create box corner labels from masks.

3.6 Iterative inference

Given the large spatial stride of our model, it is difficult for it to resolve fine-grained details, which is
a necessary ability when tracking points. We resolve this issue during inference, by “zooming in” on
the target.

Concretely, for point tracking specifically, we begin our tracking procedure by initializing a trajectory
centered on the prompt coordinate (i.e., with zero velocity), and then perform a forward pass of the
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Figure 2: Samples from the training dataset for TAG, along with ground truth annotation (green)
and predictions from our model (red). We focused our effort on curating data from existing tracking
datasets to ensure high diversity, as shown in the samples above, which include scenes commonly
found in popular datasets (urban and natural environments) but also a long tail of challenging tasks for
insect tracking and microscopy (left column). We target such diverse scenes to ensure our resulting
model is useful for a range of applications, including for researchers and practitioners in other
scientific fields.

model, and then re-center the crop at every timestep according to the estimated trajectory, and repeat
inference. Inference typically stabilizes to a solution within 8 steps.

This achieves an iterative refinement procedure, quite similar to the method used in the current
state-of-the-art in point tracking (Harley et al., 2022; Karaev et al., 2023), but our strategy does not
necessitate the usage of refinement steps during training.

3.7 Implementation details

Our model is 285M parameters, the majority of which belong to the transformer at the center. We
train it across 8 A100-80G GPUs. We find that with this compute, training is very slow: the model
only plateaus in improvement after approximately 30 days of continuous training, or about 5,760
A100 hours. As we are limited by compute, this is significantly less than other large-scale models
like SegmentAnything (17,408 hours, Kirillov et al. (2023)) or CLIP (86,016 hours, Radford et al.
(2021)), and we expect results would improve with additional compute. We vary sequence lengths and
resolutions semi-randomly during training, and finish training with a high-resolution long-sequence
fine-tuning stage (using T = 64, H = 224,W = 256). At inference time, the model runs at
224 × 256 resolution at 80 FPS. For object tracking datasets, we simply resize the video to this
resolution. For point tracking datasets, we keep the original video resolution and take internal crops.
To track across videos longer than 64 frames, we simply re-prompt the tracker using an estimate from
the second half of the video, selecting this frame with the help of the visibility estimates.

4 Datasets

We provide a high-level overview of all the datasets considered in this work in Table 1 and Figure 2.
We have parsed and aggregated nearly every tracking dataset that we are aware of, which currently
totals 75. We separated the data into subsets for training, validation, and testing, using some datasets
exclusively for testing so as to measure one-shot performance on unseen domains. We filtered the data
to remove clips without motion. We additionally created heuristics to help reduce the amount of data
with annotation errors, e.g., detecting “teleports” by setting thresholds on velocity and acceleration. In
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Table 1: Datasets used in training, with annotation types and frame counts.

Name Annotation type Number of frames

Ant Det and Track (Wu et al., 2022) Box 5334
AcinoSet (Joska et al., 2021) Point 114856
Animaltrack (Zhang et al., 2022) Box 19858
BDD100K (Yu et al., 2020) Mask 44776
BEE23 (Cao et al., 2023) Box 3562
BL30K (Cheng et al., 2021) Mask 2400000
BURST (Athar et al., 2023) Mask 2099437
COCO (Lin et al., 2014) Mask 123287
DanceTrack (Sun et al., 2022) Point 67304
FBMS (Brox and Malik, 2010; Ochs et al., 2013) Mask 13860
Fishschooling (Lauer et al., 2022) Point 70
FlyingThings (Mayer et al., 2016) Point & Mask 53520
GMOT-40 (Bai et al., 2021) Mask 9643
GOT10k (Huang et al., 2019) Box 1447200
HOB (Kuipers et al., 2020) Box 55388
HOOT (Sahin and Itti, 2023) Box 435790
Horse-10 (Mathis et al., 2021) Point 8814
Interhand2.6M (Moon et al., 2020) Point 2590347
KITTI (Geiger et al., 2013) Box 19103
KubricPoints (Greff et al., 2022) Point 32256
KubricContainers (Van Hoorick et al., 2023) Vis. & Full Mask 972
KubricRandom (Van Hoorick et al., 2023) Vis. & Full Mask 136800
LASOT (Fan et al., 2019) Box 3517342
LV-VIS (Wang et al., 2023) Mask 89203
MOSE (Ding et al., 2023) Mask 11054
MOT17 (Milan et al., 2016) Box 33705
MOTS (Voigtlaender et al., 2019) Mask 5906
Marmoset (Lauer et al., 2022) Point 5316
OTB (Wu et al., 2013) Box 75135
OVIS (Qi et al., 2022) Mask 62641
OpenMonkeyStudio (Bala et al., 2020) Point 194518
Parenting-mice (Lauer et al., 2022) Point 379
PointOdyssey (Zheng et al., 2023) Point & Mask 508142
PoseTrack21 (Doering et al., 2022) Point 162064
SAIL-VOS (Hu et al., 2019) Vis. & Full Mask 113490
SportsMot (Cui et al., 2023) Box 150379
SurgicalHands (Louis et al., 2023) Point 5134
TEyeD (Fuhl et al., 2021) Point+Mask 562139
TLP (Moudgil and Gandhi, 2019) Box 653484
TempleColor-128 (Liang et al., 2015) Box 55652
TrackingNet (Muller et al., 2018) Box 7089102
Tri-mice (Lauer et al., 2022) Point 112
UAV123 (Mueller et al., 2016) Box 113476
UBody (Lin et al., 2023) Point 1065925
VSB100 (Galasso et al., 2013) Mask 923
VideoCube (Hu et al., 2022) Box 1029712
Visdrone-SOT2019 (Du et al., 2019) Box 109909
YouTube-VOS (Yang et al., 2022) Mask 108298

Total 24891859

total this process yielded approximately 4 million unique 32-frame clips for training (with 1 tracking
annotation each), and approximately 2 million higher-resolution 64-frame clips.

5 Experiments

We test our model in point, mask and box tracking across diverse held-out benchmarks.

Baselines. We compare against the following state-of-the-art point, mask and box trackers:
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Table 2: Comparison against state-of-the-art in point tracking, across multiple datasets. Columns
report δavg, an accuracy metric (higher is better; see text for details).

Dataset

Method

CoTracker Ours(Karaev et al., 2023)

TapVID-Davis (Doersch et al., 2022a) 75.7 75.8
PointOdyssey-Test (Zheng et al., 2023) 46.4 51.0
ZebraFish (Pedersen et al., 2020) 41.6 77.3
CroHD (Sundararaman et al., 2021) 55.5 57.1
NewZealand-Wildlife (LILA) 50.1 52.3

Table 3: Ablation study on “iterative zooming”, across multiple point tracking datasets. Columns
report δavg, an accuracy metric (higher is better; see text for details).

Dataset

Method

Ours Ours w/o zooming

TapVID-Davis (Doersch et al., 2022a) 75.8 58.4
PointOdyssey-Test (Zheng et al., 2023) 51.0 42.6
ZebraFish (Pedersen et al., 2020) 77.3 61.5
CroHD (Sundararaman et al., 2021) 57.1 46.2
NewZealand-Wildlife (LILA) 52.3 42.3

(1) CoTracker (Karaev et al., 2023), which is a state of the art point tracking method that jointly infers
multiple point trajectories through iterative inference. At each iteration, it computes cross correlation
features maps around the estimated point locations and a transformer attends across different tracks
to update their location and feature estimates.

(2) Cutie (Cheng et al., 2023), a state-of-the-art approach for mask tracking, employs a query-based
object transformer to maintain both a bottom-up dense memory, as well as a top-down memory of
objects to distinguish distractor objects.

(3) MixFormer (Cui et al., 2022) introduces a mixed attention module (MAM) to allow joint extraction
of features for search regions and matching to the target region. The method only performs box
tracking, and achieves state-of-the-art results on box tracking benchmarks.

Evaluation metrics. We report the standard evaluation metrics for each type of tracking output. Point
tracking uses δavg, which is the average of [δ1, δ2, δ4, δ8, δ16], where each δk captures the proportion
of timesteps where the estimated track is within k pixels of the ground truth. Mask tracking uses J
and F , which are the Jaccard score and F -measure, where the Jaccard score measures the intersection
over union (IoU) of the masks, and the F measure highlights accuracy near boundaries. Object
tracking uses two precision metrics, P for precision itself and Pnorm which is normalized using the
box dimensions, as well as AUC which captures the area under the precision/recall curve.

5.1 Point tracking

We show quantitative results for point tracking in Table 2. Despite being trained for point, mask,
and box tracking jointly, our model outperforms the specialized point-tracking state-of-the-art in all
benchmarks. While large-scale training is a key contributor to our results, we additionally find that
one component of our architecture, iterative zooming, is critical for fine-grained tracking, as seen in
Table 3.

5.2 Mask tracking

We show quantitative results comparing to the state-of-the-art for mask tracking in Table 4. We
evaluate on both the J and F metrics across four datasets. We find that our method underperforms
compared to the task-specific method, possibly due to over-compression at the bottleneck, or the
model being under-capacity. Unlike for box and point tracking, we are unable to evaluate Cutie on
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Table 4: Comparison against state-of-the-art in mask tracking, across multiple datasets. Columns
report Jaccard scores (J) and F-measure (F ) (higher is better; see text for details).

Dataset

Method

Cutie OursCheng et al. (2023)
J F J F

DAVIS (Pont-Tuset et al., 2017) 81.3 89.1 76.0 80.5
VOST (Tokmakov et al., 2023) 42.8 52.7 31.3 46.3
UVO (Wang et al., 2021) 78.4 86.0 70.5 70.8
YCBInEOAT (Wen et al., 2020) 65.7 80.5 52.9 58.8

Table 5: Comparison against state-of-the-art in box tracking, across multiple datasets. Columns report
precision scores (P , Pnorm) and area under the curve (AUC) (higher is better; see text for details).

Dataset

Method

MixFormer OursCui et al. (2022)
P Pnorm AUC P Pnorm AUC

LaTOT (Zhu et al., 2023) 60.7 41.6 36.4 89.0 32.0 35.3
MOCA (Nicora et al., 2020) 79.9 98.1 85.7 83.0 76.7 73.4
CTMC (Anjum and Gurari, 2020) 49.2 45.5 39.9 67.4 46.2 52.4
TOTB (Fan et al., 2021) 90.8 90.4 82.8 93.4 79.2 74.4
Zebrafish (Pedersen et al., 2020) 62.0 53.1 47.8 94.3 53.6 58.2

out-of-domain natural science datasets, because those datasets are only labeled with point or box
annotations.

5.3 Box tracking

Finally, we evaluate box tracking in Table 5 on 5 diverse datasets, reporting precision (P , Pnorm)
and AUC (area under the curve). Again, although our method contains no specialized machinery
for box tracking and can perform point, mask, and box tracking jointly, we match or outperform the
state-of-the-art in specialized box tracking approaches.

6 Conclusion and Limitations

We proposed a model and a training strategy that allows training on datasets for disparate tracking
tasks. Our single model achieves state-of-the-art performance on a number of tracking tasks without
any additional post-processing, outperforming prior methods which are tailored for specific tasks.
Our work shows the potential of solving tracking with a general transformer model trained with
a large amount of data. As with all tracking approaches, our method can be used for positive and
negative purposes, but we focus here on foundational model capabilities. We highlight a few key
limitations for future work.

Scaling to more datasets. While we have collected a large set of point, mask, and box tracking
datasets, this was a largely manual process that we were unable to extend to a number of important
tracking datasets. We plan to open-source our implementation to enable the community to build on
the datasets we’ve collected, but also to allow others to contribute implementations for datasets we
have not yet implemented. We expect this common repository of datasets will lead to faster, more
general advances in object tracking.

Dense correspondences. Our method achieves state-of-the-art results on point tracking by a wide
margin. However, similar to other point-tracking approaches, extracting dense, fine-grained temporal
correspondences under our model would require running inference on every pixel separately.

Unifying detection. Our approach unifies disjoint tasks in user-initialized tracking, where the point,
mask, or box of interest is provided as a prior. However, we do not tackle multi-object tracking, which

9



requires additionally detecting all objects from a given list of categories, as we do not address object
detection as part of our pipeline. A useful extension of this work would be to address object detection
and multi-object tracking with our method, which may further improve results on user-initialized
tracking as well.
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