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Abstract—This paper presents a new state-of-the-art for doc-
ument image classification and retrieval, using features learned
by deep convolutional neural networks (CNNs). In object and
scene analysis, deep neural nets are capable of learning a
hierarchical chain of abstraction from pixel inputs to concise
and descriptive representations. The current work explores this
capacity in the realm of document analysis, and confirms that
this representation strategy is superior to a variety of popular
handcrafted alternatives. Extensive experiments show that (i)
features extracted from CNNs are robust to compression, (ii)
CNNs trained on non-document images transfer well to document
analysis tasks, and (iii) enforcing region-specific feature-learning
is unnecessary given sufficient training data. This work also
makes available a new labelled subset of the IIT-CDIP collection,
containing 400,000 document images across 16 categories.

I. INTRODUCTION

Many document types have a distinct visual style. For
example, “letter” documents are typically written in a standard
format, which is recognizable even at scales where the text is
unreadable. Motivated by this observation, this paper addresses
the problem of document classification and retrieval, based on
the visual structure and layout of document images.

Content-based analysis of document images has a number
of applications. In digital libraries, documents are often stored
as images before they are processed by an optical character
recognition (OCR) system, which means image analysis is
the only available tool for initial indexing and classification
[18]. As a pre-processing stage, document image analysis can
facilitate and improve OCR by providing information about
each document’s visual layout [8]. Furthermore, document
information that is lost in OCR, such as typeface, graphics,
and layout, is often stored and indexed using images or image
descriptors. Therefore, image analysis is complementary to
OCR at several stages of document analysis.

The challenge of document image analysis arises from
the fact that within each document type, there exists a wide
range of visual variability. This point is illustrated in the
document images shown in Figure 1. Intra-class variability
renders spatial layout analysis difficult, and template-based
matching impossible [6]. Another issue is that documents of
different categories often have substantial visual similarities.
For instance, there exist advertisements that look like news ar-
ticles, and questionnaires that look like forms, and so on. From
the perspective of “visual styles”, some erroneous retrievals in
such circumstances may be justifiable, but in general the task of
document image analysis is to classify and retrieve documents
despite intra-class variability, and inter-class similarity.

Similar challenges appear in other fields, such as object
recognition and scene classification. In those domains, the
current state-of-the-art approach involves training a deep con-
volutional neural network (CNN) [16] to learn features for
the task [20]. Inspired by the success of CNNs in other
domains, this paper presents an extensive evaluation of CNNs
for document classification and retrieval.

A. Related Work

In the past twenty years of document image analysis, re-
search has oscillated between region-based analysis and whole
image analysis, and simultaneously, between handcrafted fea-
tures and machine-learned ones.

The power of region-based analysis of document images
has been clearly demonstrated in the domain of rigidly struc-
tured documents, such as forms and business letters [5]. To
some extent, the classification of perfectly rigid documents
(e.g., forms) can be reduced to the problem of template
matching, and less-rigid document types (e.g., letters) can
similarly be classified by fitting the geometric configuration
of the document’s components to one of several template
configurations, via geometric transformations [9]. However, for
documents with more flexible structures, as considered herein,
template-based approaches are inapplicable.

An alternative strategy is to treat document images holis-
tically, and search for discriminative “landmark” features that
may appear anywhere in the document. This strategy is some-
times called a “bag of visual words” approach, since it de-
scribes images with a histogram over an orderless vocabulary
of features [7]. For example, finding a salutation in a document
(potentially through OCR) is a good cue that the document
is a letter, regardless of that feature’s exact spatial position
[22]. This approach has been successful in retrieving and
classifying a broader range of documents than the template-
based approaches, although the approach is less discriminating
in the domain of rigid-template documents.

Recently, there have been attempts to bridge the gap
between region-based and holistic analyses. By concatenating
image features pooled at several region sizes, it is possible
to build a descriptor that contains both global and local
layout characteristics [15]. This technique, known as spatial
pyramid matching, was initially developed for categorizing
scenes, but it has been shown to apply well to documents also,
especially if the pooling regions are designed with document
categorization in mind [14]. For document retrieval, this type
of representation represents the current state-of-the-art.



Fig. 1. Representative examples from each category of the RVL-CDIP dataset used for evaluation in this paper. For each category, two images are shown in
a column. The document classes shown are (left-to-right) “letter”, “memo”, “email”, “file folder”, “form”, “handwritten”, “invoice”, “advertisement”, “budget”,
“news article”, “presentation”, “scientific publication”, “questionnaire”, “resume”, “scientific report”, and “specification”.

At the same time, many researchers have replaced hand-
crafted features and representations with machine-learned vari-
ants [8]. Most recently, it was shown that every component
of a document image analysis system, from feature-building
to classification, can be learned by a convolutional neural
network (CNN) [11]. In that work, the authors reported a
substantial increase in classification accuracy compared to the
previous best reported on the same dataset. Similar successes
with CNNs have been reported in object recognition [12], and
also in fine-grained object recognition [20].

The success of CNNs in fine-grained object recognition is
especially relevant to document image analysis, since that field
shares some significant challenges with document analysis,
e.g., (i) inter-class similarity, and (ii) a lack of labelled training
data. In that field, it has been found that before training the
CNN on the data of interest, it is best to pre-train the network
on a larger related problem (e.g., the ImageNet 2012 challenge
[21]) to avoid overfitting. Additionally, in problems where
region-specific information is important, it is potentially better
to encode this information in multiple networks trained on
the regions of interest than in a single network trained on the
entire image [4]. This paper seeks to investigate whether these
insights are relevant to document image analysis.

Finally, CNNs in other domains have recently been ex-
tended to the task of image retrieval. After a CNN is trained
on classification, the layers of the network can be interpreted
as forming a hierarchical chain of abstraction, where the lowest
layers contain simple features, and the highest layers contain
concise and descriptive representations [16]. Output extracted
near the top of a CNN can therefore serve as a feature vector
for any task, including retrieval [20]. The present work is the
first to apply this idea toward document retrieval.

B. Contributions

In the light of previous work, this paper makes the fol-
lowing contributions. First, the paper presents experiments
showing that features extracted from CNNs are superior to the
state-of-the-art handcrafted alternatives. Second, experiments
in feature compression show that the CNN features can be
compressed to very short codes with negligible loss in perfor-
mance. Third, this work demonstrates that CNNs trained on
non-document images transfer well to document-related tasks.
Fourth, the paper explores a strategy of embedding human
knowledge of document structure into CNN architectures, by
guiding an ensemble of CNNs toward learning region-specific
features. Finally, this work makes available a new labelled
subset of the Illinois Institute of Technology Complex Docu-
ment Information Processing (IIT-CDIP) collection of tobacco

litigation documents [17]. The new dataset, named the Ryerson
Vision Lab Complex Document Information Processing (RVL-
CDIP) dataset, contains 400,000 document images across 16
categories, and is available at http://scs.ryerson.ca/∼aharley/
rvl-cdip.

II. TECHNICAL APPROACH

In structured documents, the layout of text and graphics
often reflects important information about genre. Therefore,
documents of a category often share region-specific features.
This paper attempts to learn these informative features by
training either a single holistic CNN or an ensemble of region-
based CNNs. Additionally, the paper explores two different
initialization strategies: the first initializes the weights of the
CNNs randomly; the second “transfers” weights learned in
another visual classification task.

A. Holistic convolutional neural networks

Convolutional neural networks take a matrix of pixels as
input, process this input through a stack of convolutional
layers, then classify the output of those convolutional layers
using two or three fully-connected layers [16]. The fully-
connected layer activations in CNNs are generally not invariant
to geometric transformations in the input. In applications
such as object detection, this is an inconvenient property, and
much work has been done to add spatial invariance, e.g.,
by “jittering” the training data [16]. For document analysis,
however, spatial specificity of features may be beneficial. By
design, a holistic CNN trained on a dataset of well-aligned
document images may be capable of learning region-specific
features automatically.

Typically, CNNs are trained to perform a classification task,
but a CNN trained on classification can be exploited to perform
retrieval also. It has been shown that activation patterns near
the top of a deep CNN provide discriminative feature vectors
for a variety of tasks [20]. These feature vectors are high-
dimensional (e.g., 4096 dimensions), but their dimensionality
can be reduced (e.g., via principal component analysis) without
significantly affecting their discriminative power [2].

B. Region-based guidance

Guiding CNNs to learn region-based features may aid
fine-grained discrimination. For example, it is possible that a
holistic CNN may learn that the “header” region of a document
is important, but training a CNN to classify documents using
only this region increases the likelihood that this feature will
be learned. The idea of this approach is to devote one CNN
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to each region of interest, and therefore force multiple CNNs
to learn rich region dependent representations, from which
features can be extracted and combined.

Any number of region-specific CNNs can be used in this
approach. In this work, a total of five CNNs are used. Four
of these are region-tuned, placed at the header, left body, right
body, and footer of the document images. The fifth is a holistic
CNN, trained on the entire images. The final region-based
representation of document images is built by combining and
compressing features extracted from each region-tuned CNN.
The final descriptor is represented by the concatenation of
region specific features: [φ0, φ1, . . . , φn], where φ0 represents
the PCA-compressed feature vector extracted from the holistic
CNN, and φ1, . . . , φn represent the analogous vectors extracted
from regions 1 through n.

C. Transfer learning

The goal of transfer learning is to facilitate learning on
problems with insufficient training data, by taking advantage
of shared structure in related problems [1]. In the context of
CNNs, transfer learning can be implemented at the weight ini-
tialization step. The typical initialization strategy for CNNs is
to set all weights to small random numbers [16]. An alternative
strategy is to pre-train the network on a complementary task,
which has more training data than the target task, effectively
transferring the learned weights to the new problem. A popular
choice for pre-training is the ImageNet 2012 challenge, as it
contains over a million training examples of natural images,
in 1000 object categories [21]. Features extracted from an
ImageNet-trained network have been shown to be effective
general-purpose features in a variety of other vision challenges,
even without fine-tuning on the target problem [20]. This paper
investigates whether the ImageNet features are general enough
to be applied to documents, and furthermore whether weights
transferred from such pre-training provide better results than
random initialization for document-classifying CNNs.

III. EMPIRICAL EVALUATION

A. Datasets

The performance of the proposed approach was evaluated
on two versions of the IIT-CDIP test collection [17]. This col-
lection contains high resolution images of scanned documents,
collected from public records of lawsuits against American
tobacco companies [23]. In total, the database has over seven
million documents, hand-labelled with tags. Many documents
in the dataset have erroneous tags.

The first version of the dataset, listed in the results as
Small-CDIP, is a sample of 3482 images from the collection,
selected and labelled in another work [13]. Each image in this
dataset has one of ten labels; the most common label is “letter”.

The second version of the dataset, listed in the results
as RVL-CDIP, is a new random sample of 25,000 images
from each of 16 categories in the IIT-CDIP collection, for a
total of 400,000 labelled images. This sample was collected
specifically for the present paper. The 16 categories are “let-
ter”, “memo”, “email”, “file folder”, “form”, “handwritten”,
“invoice”, “advertisement”, “budget”, “news article”, “pre-
sentation”, “scientific publication”, “questionnaire”, “resume”,

“scientific report”, and “specification”. The selection of cate-
gories was guided by earlier work on document categorization
[19], and also by the range of categories present in Small-
CDIP. Another factor was the knowledge that CNNs do well
with large datasets (e.g., over a million images) [12], so the
selection of categories was restricted to document types that
were well represented in the dataset. A sample of the dataset
is shown in Figure 1. The dataset can be downloaded at the
following url: http://scs.ryerson.ca/∼aharley/rvl-cdip.

Each dataset was split into three subsets for the purposes
of experimentation. The Small-CDIP dataset was split as in the
related work [13]: 800 images were used for training, 200 for
validation, and the remainder for testing. Since this is a small
dataset, 10 random splits in those proportions were created;
reported results reflect the median performance from those
splits. In the case of retrieval, the median was selected based
on the mean average precision at the 10th retrieval (mAP@10).
The RVL-CDIP dataset was split in proportions similar to those
of ImageNet [21]: 320,000 images were used for training,
40,000 images for validation, and 40,000 images for testing.
The validation sets were used to find plateaus in the CNN
training process. All results are reported on the test sets.

B. Implementation details

The CNNs were implemented in Caffe [10]. All networks
computed an N -way softmax at the top layer, where N is the
number of categories being learned.

All but two of the CNNs used Caffe’s reference ImageNet
architecture, which is based on the work of Krizhevsky et al.
[12]. This network has five convolutional layers, and three
fully-connected layers, with pooling, ReLU, and drop-out
employed at several stages in between. As input, the network
takes images of size 227 × 227. The full architecture can be
written as 227× 227− 11× 11× 96− 5× 5× 256− 3× 3×
384− 3× 3× 384− 3× 3× 256− 4096− 4096−N . Features
were extracted from these CNNs by taking the output of the
first fully-connected layer, which has 4096 dimensions.

The first network with a different architecture is listed
in the results as a “small” holistic CNN. This network uses
hyperparameters established in another work on document
image classification [11]: two convolutional layers and three
fully-connected layers, with pooling, ReLU, and drop-out
employed at several stages in between. The network takes as
input images of size 150 × 150. The full architecture can be
written as 150×150−36×36×20−8×50−1000−1000−N .
As with the ImageNet networks, features were extracted from
this network by taking the output of the first fully-connected
layer, which in this case has 1000 dimensions.

The second network with a different architecture is the
“Ensemble of CNNs” network, which uses vectors extracted
from the region-based CNNs to perform retrieval and classi-
fication. For classification, the individual region-based vectors
were compressed using principal component analysis (PCA)
to 640 dimensions, and then concatenated into a feature
vector of size 3200. Finally, a fully-connected network of size
3200 − 4096 − N was trained to classify these features. For
retrieval, features were created by individually compressing
each region’s feature vector to 128 dimensions, and then
concatenating, resulting in a vector with 640 dimensions.
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To extract regions from the images, all images were first
resized to 780× 600. The header region included the top 256
rows of pixels in each image. Similarly, the footer region
included the bottom 256 rows. The left body region was
delineated by the intersection of the 400 central rows and the
300 left columns; the right body region was symmetrically
defined. Every extracted region was resized to 227×227 before
being used as input to a CNN.

Several state-of-the-art Bag of Words (BoW) approaches
to document representation were also implemented. As in
previous work [14], the words were k-means clustered SURF
features [3]. These features were pooled in a spatial pyramid,
as well as in various combinations of horizontal and vertical
partitions [14]. In the results, we denote these horizontal-
vertical partitioning schemes with HaVb, where a is the
number of times the image was recursively split horizontally,
and b is the number of times the image was recursively split
vertically. For example, H0V3 has 15 bags: 1 for the original
image, 2 for the first vertical split, 4 for the second vertical
split, and 8 for the third. For the holistic bag of words,
the resulting feature vector has 300 dimensions; H2V0 has
2100 dimensions; H0V3 has 4500 dimensions; H2V3 and the
spatial pyramid approach both have 6300 dimensions. For
classification of the BoW features, a random forest with 500
trees and

√
D feature dimensions was trained, where D was

the length of the feature vector of the complete bag of words.

Retrieval was performed using the Euclidean distance
between the test set descriptors and every descriptor of the
training set. The sorted distances were used to rank the images
of the training data, and return a sorted list of documents for
each test query. For all approaches with feature vectors larger
than 128 dimensions, the vectors were first compressed to 128
dimensions using PCA before they were used for retrieval. This
is consistent with the related work [20]; it not only enables fast
retrieval, but also keeps the task within reasonable memory
limits. The feature vectors were L2-normalized before and after
PCA compression.

C. Classification results

Table I shows the classification accuracies of the var-
ious BoW approaches, along with the various CNN-based
approaches, on both the Small-CDIP dataset and the RVL-
CDIP dataset.

On Small-CDIP, the ensemble of region-based CNNs per-
formed best, which demonstrates the strength of region-based
analysis. The “small” holistic CNN performed similarly to the
ImageNet-sized holistic CNN when both were initialized with
random weights. Performance of the large network improved
substantially when it was initialized with ImageNet weights.
The BoW approaches performed similarly to the random-
initialized CNNs. Between the BoW approaches, the spatial-
pyramid-pooled BoW outperformed the rest by a small margin.

On RVL-CDIP, the holistic CNN fine-tuned from Ima-
geNet performed better than any other approach, including
the ensemble of CNNs. This suggests that given sufficient
training data, the holistic CNN may be able to learn some
amount of the information that the region-based analysis was
expected to add. Between the random-initialized networks, the
large holistic network performed better than the small network,

TABLE I. CLASSIFICATION ACCURACIES ON BOTH DATASETS.

Approach type Region strategy Small-CDIP RVL-CDIP

Bag of Words

Holistic .645 .446
H0V3 .679 .483
H2V0 .652 .461
H2V3 .681 .493
Spatial pyramid .687 .491

Random init. CNN Holistic (small) .643 .851
Holistic (ImageNet size) .634 .878

ImageNet init. CNN

Header .710 .849
Left body .667 .827
Right body .708 .795
Footer .622 .794
Holistic .756 .898
Ensemble of regions .799 .893

likely due to the benefit of additional training data. As observed
in Small-CDIP, fine-tuning from ImageNet improved results
over random initialization, although by a smaller margin in
this case. While the CNN approaches showed better perfor-
mance on this larger dataset, BoW performance dropped by
nearly 20%, suggesting that (i) the larger dataset presents a
more difficult classification task (perhaps because it has more
categories), and/or (ii) the additional training data does not
help these approaches.

D. Retrieval results

Retrieval was measured using mean average precision
(mAP). Average precision computes the average value of
precision as a function of recall on some interval. Formally,
the discrete version of this metric is given by

AP =

∑n
k=1(P (k)× rel(k))

number of relevant documents
, (1)

where n is the number of retrieved documents, P (k) is the
precision of the first k retrievals, and rel(k) equals 1 if the kth
retrieval is relevant and 0 otherwise. This metric is sensitive to
ranking order, so the score is higher if relevant documents are
retrieved before irrelevant documents. Mean average precision
is simply the average precision summed over all queries,
divided by the number of queries. Retrieved documents were
determined to be “relevant” if they had the same class label
as the query image.

Retrieval results on both datasets are summarized in
Figure 2. In Small-CDIP, the CNN approaches seemed to
have slightly better features for retrieval than the BoW ap-
proaches. Between the CNN approaches, the ensemble of
CNNs performed better than any other approach, suggesting
that the region-based training was beneficial. On the RVL-
CDIP dataset, the CNN approaches showed a large improve-
ment in accuracy, outperforming the BoW approaches by a
wide margin. On this larger dataset, the holistic CNN outper-
formed the ensemble of CNNs. This suggests that with suffi-
cient training data, region-based training may be unnecessary.
Interestingly, the ImageNet-trained CNN outperformed the
BoW approaches at all levels of retrieval, on both datasets. This
supports the idea that features learned on object classification
transfer well to document analysis.

An additional experiment was performed to measure the
effect of PCA compression on mAP@10 performance in the
RVL-CDIP dataset, the results of which are summarized in
Figure 3. Remarkably, the CNN vectors showed almost no
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Fig. 2. Mean average precision at retrievals 1 through 10 for a variety of approaches on the Small-CDIP dataset (left) and the RVL-CDIP dataset (right). The
mAP@10 results are listed in square brackets. Except where otherwise noted, all CNNs were pre-trained on ImageNet.
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Fig. 3. The effect of PCA reduction on mean average precision at the 10th
retrieval (mAP@10) on RVL-CDIP.

loss in performance until they were reduced to 16 dimensions.
At all levels of compression, the holistic CNN fine-tuned from
ImageNet exceeded the performance of every other approach.

IV. CONCLUSION

This paper established a new state-of-the-art for document
image classification and retrieval, using features learned by
deep convolutional neural networks. Generic features extracted
from a CNN trained on ImageNet exceeded the performance of
the state-of-the-art alternatives, and fine-tuning these features
on document images pushed results even higher. Interestingly,
the experiments showed that given sufficient training data,
enforcing region-specific feature-learning is unnecessary. Fur-
thermore, CNN features were shown to be robust to com-
pression. In all, this work showed that the CNN approach
to document image representation exceeds the power of the
current handcrafted alternatives.
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